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Notes for the course REAL ANALYSIS

1 Topology

1.1 Basic Definitions

Definition 1.1 (Topology). Let S be a set. A subset 7 of the set B(S) of
subsets of S'is called a topology iff it has the following properties:

e DecT and SeT.

e Let {U;}ier be a family of elements in 7. Then |J,., U; € 7.

el
e Let U,V ET. ThenUNV €7.

A set equipped with a topology is called a topological space. The elements of
T are called the open sets in S. A complement of an open set in S is called
a closed set.

Definition 1.2. Let S be a topological space and x € S. Then a subset
U C S is called a neigbourhood of z iff it contains an open set which in turn
contains x.

Definition 1.3. Let .S be a topological space and U a subset. The closure

U of U is the smallest closed set containing U. The interior U of U is the
largest open set contained in U. U is called dense in S ift U = S.

Exercise 1. Explain and justify the meaning of "smallest closed set" and
"largest open set" in the above definition. Could one similarly talk about
the "largest closed set" and the "smallest open set"?

Definition 1.4 (base). Let 7 be a topology. A subset B of 7 is called a
base of T iff the elements of 7 are precisely the unions of elements of B. It
is called a subbase iff the elements of 7 are precisely the finite intersections
of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of
a topology on S iff it satisfies all of the following properties:

o ) eB.
e For every x € S there is a set U € B such that x € U.

o Let U,V € B. Then there exits a family {Wy}taca of elements of B
such that U NV = J,cg Wa.

Proof. Exercise. 0
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Definition 1.6. Let S be a topological space and p a point in S. We call
a family {Uy}aca of open neighbourhoods of p a neighbourhood base at p iff
for any neighbourhood V of p there exists o € A such that U, C V.

Definition 1.7 (Continuity). Let S, T be topological spaces. A map f : S —
T is called continuous iff for every open set U € T the preimage f~1(U) in
S is open. We denote the space of continuous maps from S to T by C(S,T).

Proposition 1.8. Let S,T,U be topological spaces, f € C(S,T) and g €
C(T,U). Then, the composition go f : S — U is continuous.

Proof. Immediate. O

Definition 1.9 (Induced Topology). Let S be a topological space and U a
subset. Consider the topology given on U by the intersection of each open
set on S with U. This is called the induced topology on U.

Definition 1.10 (Product Topology). Let S be the cartesian product S =
[Iocr Sa of a family of topological spaces. Consider subsets of S of the form
[I.c; Ua where finitely many U, are open sets in S, and the others coincide
with the whole space U, = S,. These subsets form the base of a topology
on S which is called the product topology.

Proposition 1.11. Let S, T, X be topological spaces and f € C(S x T, X).
Then the map fy: T — X defined by f(y) = f(z,y) is continuous for every
xes.

Proof. Fix x € S. Let U be an open set in X. We want to show that
W = f;1(U) is open. We do this by finding for any y € W an open
neigbourhood of y contained in W. If W is empty we are done, hence assume
that this is not so. Pick y € W. Then (x,y) € f~1(U) with f~1(U) open
by continuity of f. Since S x T carries the product topology there must be
open sets V,, C S and V, C T with x € V,, y € V, and V; x V,, C f~1(U).
But clearly V;, C W and we are done. O

1.2 Special topological spaces

In a topological space it is useful if two distinct points can be distinguished
by the topology. A strong form of this distinguishability is the Hausdorff
property.

Definition 1.12 (Hausdorff). Let S be a topological space. Assume that
given any two distinct points z,y € S we can find open sets U,V C S such

that z € U and y € V and UNV = (). Then, S is said to have the Hausdorff
property. We also say that S is a Hausdorff space.

Definition 1.13. Let S be a topologcial space. S is called first-countable iff
there exists a countable neighbourhood base at each point of S. S is called
second-countable iff the topology of S admits a countable base.



Robert Oeckl - RA NOTES — 18/03/2009 3

Definition 1.14 (open cover). Let S be a topological space and U C S a
subspace. A family of open sets {U,}aca is called an open cover of U iff

U - UaeA Ua‘

Definition 1.15. Let S be a topological space and U C S a subset. U
is called compact iff every open cover of U contains a finite subcover. U
is called sequentially compact iff every sequence in U contains a converging
subsequence.

Proposition 1.16. A closed subset of a compact space is compact. A com-
pact subset of a Hausdorff space is closed.

Proof. Exercise. 0

Proposition 1.17. The image of a compact set under a continuous map is
compact.

Proof. Exercise. O

1.3 Sequences and convergence

Definition 1.18 (Convergence of sequences). Let z := {x,}nen be a se-
quence of points in a topological space S. We say that x has an accumulation
point (or limit point) p iff for evey neighbourhood U of x we have z € U
for infinitely many k € N. We say that x converges to a point p iff for any
neighbourhood U of p there is a number n € N such that for all kK > n :
zp €U.

Proposition 1.19. Let S be a topological space and U C S a closed subspace.
Let x be a sequence of points in U which has an accumulation point p € S.
Then, p e U.

Proof. Suppose p ¢ U. Since U is closed S\ U is an open neighbourhood of
p. But S\ U does not contain any point of z, so p cannot be accumulation
point of . This is a contradiction. O

Proposition 1.20. Let S, T be topological spaces, f € C(S,T) and {xy}nen
a sequence in S converging to p. Then, the sequence f{(zy)}nen in T con-
verges to f(p).

Proof. Exercise. 0

Proposition 1.21. Let S be Hausdorff space and {zy}nen a sequence in S
which converges to a point © € S. Then, {x,}nen does not converge to any
other point in S.

Proof. Exercise. 0
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Definition 1.22 (Limit point compactness). A topological space S is said
to be limit point compact iff every sequence in S has an accumulation point
(limit point).

Proposition 1.23. A compact space is limit point compact.

Proof. Consider a sequence x in a compact space S. Suppose z does not have
an accumulation point. Then, for each point p € S we can choose an open
neighbourhood U, which contains only finitely many points of z. However,
by compactness, S is covered by finitely many of the sets U,. But their union
can only contain a finite number of points of z, a contradiction. O

Proposition 1.24. Let S be a first-countable topological space and x =
{Zn}tnen a sequence in S with accumulation point p. Then, x has a subse-
quence that converges to p.

Proof. By first-countability choose a countable neighbourhood base {U,, }nen
at p. Now consider the family {W, },en of open neighbourhoods W, :=
Ny—; Uk at p. It is easy to see that this is again a countable neighbourhood
base at p. Moreover, it has the property that W,, C W, if n > m. Now,
Choose n; € N such that z,, € Wj. Recursively, choose ngy; > ny such
that zp,, , € Wgyq. This is possible since W1 contains infinitely many
points of . Let V be a neighbourhood of p. There exists some k € N such
that Uy C V. By construction, then W,, € Wy C U for all m > k and
hence x,,, € V for all m > k. Thus, the subsequence {x,,, }men converges
to p. O

2 Metric spaces

2.1 Basic Definitions

Definition 2.1. Let S beaset and d : Sx.S — R a map with the following
properties:

o d(z,y) =d(y,x) Vz,y € S. (symmetry)
o d(z,z) <d(z,y) +d(y,z) Vz,y,z € S. (triangle inequality)
o d(z,y) =0 = z =y Vaz,y € S. (definiteness)

Then d is called a metric on S. S is also called a metric space.

Definition 2.2. If in the above definition the third condition is weakened
to

o d(z,2)=0 VzeS,

then d is called a pseudometric and S a pseudometric space.



Robert Oeckl - RA NOTES — 18/03/2009 5

Definition 2.3. Let S be a metric space, x € S and r > 0. Then the set
B, (z) :={y € S :d(x,y) < r} is called the open ball of radius r centered
around z in S. The set B,(z) := {y € S : d(x,y) < r} is called the closed
ball of radius r centered around z in S.

Proposition 2.4. Let S be a metric space. Then, the open balls in S to-
gether with the empty set form the basis of a topology on S. This topology is
Hausdorff and first-countable.

Proof. Exercise. O
Definition 2.5. A topological space is called metrizable iff there exists a
metric such that the open balls given by the metric are a basis of its topology.
2.2 Completeness and Completion

Proposition 2.6. Let S be a metric space and x := {x, }nen a Sequence in
S. Then x converges to p € S iff for any € > 0 there exists an ng € N such
that for all n > ng : d(zp,p) < €.

Proof. Immediate. O

Definition 2.7. Let S be a metric space and z := {z, }neN a sequence in
S. Then z is called a Cauchy sequence iff for all € > 0 there exists an ng € N
such that for all n,m > ng : d(xpn, Tm) < €.

Proposition 2.8. Any converging sequence in a metric space is a Cauchy
sequence.

Proof. Exercise. O

Proposition 2.9. Suppose x is a Cauchy sequence in a metric space. If p
18 accumulation point of x© then x converges to p.

Proof. Exercise. O

Definition 2.10. Let S be a metric space and U C S a subset. If every
Cauchy sequence in U converges to a point in U then U is called complete.

Proposition 2.11. A complete subset of a metric space is closed. A closed
subset of a complete metric space is complete.

Proof. Exercise. O

Definition 2.12 (Totally boundedness). Let S be a metric space. A subset
U C S is called totally bounded iff for any r > 0 the set U admits a cover by
finitely many open balls of radius r.

Proposition 2.13. A subset of a metric space is compact iff it is complete
and totally bounded.
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Proof. We first show that compactness implies totally boundedness and com-
pleteness. Let U be a compact subset. Then, for r > 0 cover U by open balls
of radius r centered at every point of U. Since U is compact, finitely many
balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy
sequence x in U. Since U is compact « must have an accumulation point
p € U (Proposition 1.23) and hence (Proposition 2.9) converge to p. Thus,
U is complete.

We proceed to show that completeness together with totally bounded-
ness imply compactness. Let U be a complete and totally bounded subset.
Assume U is not compact and choose a covering {Uy}aca of U that does
not admit a finite subcovering. On the other hand, U is totally bounded and
admits a covering by finitely many open balls of radius 1/2. Hence, there
must be at least one such ball By such that C7 := By N U is not covered
by finitely many U,. Choose a point x; in Cj. Observe that C itself is
totally bounded. Inductively, cover C),, by finitely many open balls of radius
2-(n+1) " For at least one of those, call it Byy1, Cnq1 := Bp4+1 N C, is not
covered by finitely many U,. Choose a point z,41 in Cj,41. This process
yields a Cauchy sequence x := {z}}ren. Since U is complete the sequence
converges to a point p € U. There must be a € A such that p € U,. Since
U, is open there exists r > 0 such that B(p,r) C U,. This implies, C,, C U,
for all n € N such that 27"*! < r. However, this is a contradiction to the
C,, not being finitely covered. Hence, U must be compact. U

Proposition 2.14. The notions of compactness and limit point compactness
are equivalent in a metric space.

Proof. Exercise. O
Proposition 2.15. A totally bounded metric space is second-countable.
Proof. Exercise. O

Often it is desirable to work with a complete metric space when one is
only given a non-complete metric space. To this end one can construct the
completion of a metric space. This is detailed in the following exercise.

Exercise 2. Let S be a metric space.

o Let x := {zp}nen and y := {y, }nen be Cauchy sequences in S. Show
that the limit lim, oo d(xy, yn) exists.

e Let T be the set of Cauchy sequences in S. Define the function d:
T xT — RS by d(z,y) := lim, 00 d(¥y,yn). Show that d defines a
pseudometric on T'.

e Show that a ~ b <= d(a,b) = 0 defines an equivalence relation on
T.
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e Show that S := T/ ~ is naturally a metric space.

e Show that S is complete. [Hint: First show that given a Cauchy se-
quence z in S and a subsequence ' of z we have d(x,2’) = 0. That
is, x ~ y in T. Use this to show that for any Cauchy sequence x in
S an equivalent Cauchy Sequence z’ can be constructed which has a
specific asymptotic behaviour. For example, 2’ can be made to sat-

isfy d(z,,x},) < m Now a Cauchy sequence & = {Z" }pen in

S consists of equivalence classes " of Cauchy sequences in S. Given

some representative ™ of ™ show that there is another representative

2" whith specific asymptotic behaviour. Using such representatives

2'" for all n € N show that the equivalence class in S of the diagonal

sequence y := {2’} }nen is a limit of 2.

e Show that there is a natural isometric embedding (i.e., a map that
preserves the metric) ig : S — S. Furthermore, show that this is a
bijection iff S is complete.

Definition 2.16. The metric space S constructed above is called the com-
pletion of the metric space S.

Proposition 2.17 (Universal property of completion). Let S be a metric
space, T a complete metric space and f : S — T an isometric embedding.
Then, there is a unique isometric embedding f : S — T such that f = foig.
Furthermore, the closure of f(S) in T is equal to f(S).

Proof. Exercise. O



