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kl � RA NOTES � 18/03/2009 1Notes for the 
ourse REAL ANALYSIS1 Topology1.1 Basi
 De�nitionsDe�nition 1.1 (Topology). Let S be a set. A subset T of the set P(S) ofsubsets of S is 
alled a topology i� it has the following properties:
• ∅ ∈ T and S ∈ T .
• Let {Ui}i∈I be a family of elements in T . Then ⋃

i∈I Ui ∈ T .
• Let U, V ∈ T . Then U ∩ V ∈ T .A set equipped with a topology is 
alled a topologi
al spa
e. The elements of

T are 
alled the open sets in S. A 
omplement of an open set in S is 
alleda 
losed set.De�nition 1.2. Let S be a topologi
al spa
e and x ∈ S. Then a subset
U ⊆ S is 
alled a neigbourhood of x i� it 
ontains an open set whi
h in turn
ontains x.De�nition 1.3. Let S be a topologi
al spa
e and U a subset. The 
losure
U of U is the smallest 
losed set 
ontaining U . The interior ◦

U of U is thelargest open set 
ontained in U . U is 
alled dense in S i� U = S.Exer
ise 1. Explain and justify the meaning of "smallest 
losed set" and"largest open set" in the above de�nition. Could one similarly talk aboutthe "largest 
losed set" and the "smallest open set"?De�nition 1.4 (base). Let T be a topology. A subset B of T is 
alled abase of T i� the elements of T are pre
isely the unions of elements of B. Itis 
alled a subbase i� the elements of T are pre
isely the �nite interse
tionsof unions of elements of B.Proposition 1.5. Let S be a set and B a subset of P(S). B is the base ofa topology on S i� it satis�es all of the following properties:
• ∅ ∈ B.
• For every x ∈ S there is a set U ∈ B su
h that x ∈ U .
• Let U, V ∈ B. Then there exits a family {Wα}α∈A of elements of Bsu
h that U ∩ V =

⋃
α∈A Wα.Proof. Exer
ise.
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kl � RA NOTES � 18/03/2009De�nition 1.6. Let S be a topologi
al spa
e and p a point in S. We 
alla family {Uα}α∈A of open neighbourhoods of p a neighbourhood base at p i�for any neighbourhood V of p there exists α ∈ A su
h that Uα ⊆ V .De�nition 1.7 (Continuity). Let S, T be topologi
al spa
es. A map f : S →
T is 
alled 
ontinuous i� for every open set U ∈ T the preimage f−1(U) in
S is open. We denote the spa
e of 
ontinuous maps from S to T by C(S, T ).Proposition 1.8. Let S, T, U be topologi
al spa
es, f ∈ C(S, T ) and g ∈
C(T,U). Then, the 
omposition g ◦ f : S → U is 
ontinuous.Proof. Immediate.De�nition 1.9 (Indu
ed Topology). Let S be a topologi
al spa
e and U asubset. Consider the topology given on U by the interse
tion of ea
h openset on S with U . This is 
alled the indu
ed topology on U .De�nition 1.10 (Produ
t Topology). Let S be the 
artesian produ
t S =∏

α∈I Sα of a family of topologi
al spa
es. Consider subsets of S of the form∏
α∈I Uα where �nitely many Uα are open sets in Sα and the others 
oin
idewith the whole spa
e Uα = Sα. These subsets form the base of a topologyon S whi
h is 
alled the produ
t topology.Proposition 1.11. Let S, T,X be topologi
al spa
es and f ∈ C(S × T,X).Then the map fx : T → X de�ned by fx(y) = f(x, y) is 
ontinuous for every

x ∈ S.Proof. Fix x ∈ S. Let U be an open set in X. We want to show that
W := f−1

x (U) is open. We do this by �nding for any y ∈ W an openneigbourhood of y 
ontained in W . If W is empty we are done, hen
e assumethat this is not so. Pi
k y ∈ W . Then (x, y) ∈ f−1(U) with f−1(U) openby 
ontinuity of f . Sin
e S × T 
arries the produ
t topology there must beopen sets Vx ⊆ S and Vy ⊆ T with x ∈ Vx, y ∈ Vy and Vx × Vy ⊆ f−1(U).But 
learly Vy ⊆ W and we are done.1.2 Spe
ial topologi
al spa
esIn a topologi
al spa
e it is useful if two distin
t points 
an be distinguishedby the topology. A strong form of this distinguishability is the Hausdor�property.De�nition 1.12 (Hausdor�). Let S be a topologi
al spa
e. Assume thatgiven any two distin
t points x, y ∈ S we 
an �nd open sets U, V ⊂ S su
hthat x ∈ U and y ∈ V and U ∩V = ∅. Then, S is said to have the Hausdor�property. We also say that S is a Hausdor� spa
e.De�nition 1.13. Let S be a topolog
ial spa
e. S is 
alled �rst-
ountable i�there exists a 
ountable neighbourhood base at ea
h point of S. S is 
alledse
ond-
ountable i� the topology of S admits a 
ountable base.
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over). Let S be a topologi
al spa
e and U ⊆ S asubspa
e. A family of open sets {Uα}α∈A is 
alled an open 
over of U i�
U ⊆

⋃
α∈A Uα.De�nition 1.15. Let S be a topologi
al spa
e and U ⊆ S a subset. Uis 
alled 
ompa
t i� every open 
over of U 
ontains a �nite sub
over. Uis 
alled sequentially 
ompa
t i� every sequen
e in U 
ontains a 
onvergingsubsequen
e.Proposition 1.16. A 
losed subset of a 
ompa
t spa
e is 
ompa
t. A 
om-pa
t subset of a Hausdor� spa
e is 
losed.Proof. Exer
ise.Proposition 1.17. The image of a 
ompa
t set under a 
ontinuous map is
ompa
t.Proof. Exer
ise.1.3 Sequen
es and 
onvergen
eDe�nition 1.18 (Convergen
e of sequen
es). Let x := {xn}n∈N be a se-quen
e of points in a topologi
al spa
e S. We say that x has an a

umulationpoint (or limit point) p i� for evey neighbourhood U of x we have xk ∈ Ufor in�nitely many k ∈ N. We say that x 
onverges to a point p i� for anyneighbourhood U of p there is a number n ∈ N su
h that for all k ≥ n :

xk ∈ U .Proposition 1.19. Let S be a topologi
al spa
e and U ⊆ S a 
losed subspa
e.Let x be a sequen
e of points in U whi
h has an a

umulation point p ∈ S.Then, p ∈ U .Proof. Suppose p /∈ U . Sin
e U is 
losed S \U is an open neighbourhood of
p. But S \ U does not 
ontain any point of x, so p 
annot be a

umulationpoint of x. This is a 
ontradi
tion.Proposition 1.20. Let S, T be topologi
al spa
es, f ∈ C(S, T ) and {xn}n∈Na sequen
e in S 
onverging to p. Then, the sequen
e f{(xn)}n∈N in T 
on-verges to f(p).Proof. Exer
ise.Proposition 1.21. Let S be Hausdor� spa
e and {xn}n∈N a sequen
e in Swhi
h 
onverges to a point x ∈ S. Then, {xn}n∈N does not 
onverge to anyother point in S.Proof. Exer
ise.
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kl � RA NOTES � 18/03/2009De�nition 1.22 (Limit point 
ompa
tness). A topologi
al spa
e S is saidto be limit point 
ompa
t i� every sequen
e in S has an a

umulation point(limit point).Proposition 1.23. A 
ompa
t spa
e is limit point 
ompa
t.Proof. Consider a sequen
e x in a 
ompa
t spa
e S. Suppose x does not havean a

umulation point. Then, for ea
h point p ∈ S we 
an 
hoose an openneighbourhood Up whi
h 
ontains only �nitely many points of x. However,by 
ompa
tness, S is 
overed by �nitely many of the sets Up. But their union
an only 
ontain a �nite number of points of x, a 
ontradi
tion.Proposition 1.24. Let S be a �rst-
ountable topologi
al spa
e and x =
{xn}n∈N a sequen
e in S with a

umulation point p. Then, x has a subse-quen
e that 
onverges to p.Proof. By �rst-
ountability 
hoose a 
ountable neighbourhood base {Un}n∈Nat p. Now 
onsider the family {Wn}n∈N of open neighbourhoods Wn :=⋂n

k=1 Uk at p. It is easy to see that this is again a 
ountable neighbourhoodbase at p. Moreover, it has the property that Wn ⊆ Wm if n ≥ m. Now,Choose n1 ∈ N su
h that xn1
∈ W1. Re
ursively, 
hoose nk+1 > nk su
hthat xnk+1

∈ Wk+1. This is possible sin
e Wk+1 
ontains in�nitely manypoints of x. Let V be a neighbourhood of p. There exists some k ∈ N su
hthat Uk ⊆ V . By 
onstru
tion, then Wm ⊆ Wk ⊆ Uk for all m ≥ k andhen
e xnm
∈ V for all m ≥ k. Thus, the subsequen
e {xnm

}m∈N 
onvergesto p.2 Metri
 spa
es2.1 Basi
 De�nitionsDe�nition 2.1. Let S be a set and d : S×S → R
+
0 a map with the followingproperties:

• d(x, y) = d(y, x) ∀x, y ∈ S. (symmetry)
• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S. (triangle inequality)
• d(x, y) = 0 =⇒ x = y ∀x, y ∈ S. (de�niteness)Then d is 
alled a metri
 on S. S is also 
alled a metri
 spa
e.De�nition 2.2. If in the above de�nition the third 
ondition is weakenedto
• d(x, x) = 0 ∀x ∈ S,then d is 
alled a pseudometri
 and S a pseudometri
 spa
e.
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kl � RA NOTES � 18/03/2009 5De�nition 2.3. Let S be a metri
 spa
e, x ∈ S and r > 0. Then the set
Br(x) := {y ∈ S : d(x, y) < r} is 
alled the open ball of radius r 
enteredaround x in S. The set Br(x) := {y ∈ S : d(x, y) ≤ r} is 
alled the 
losedball of radius r 
entered around x in S.Proposition 2.4. Let S be a metri
 spa
e. Then, the open balls in S to-gether with the empty set form the basis of a topology on S. This topology isHausdor� and �rst-
ountable.Proof. Exer
ise.De�nition 2.5. A topologi
al spa
e is 
alled metrizable i� there exists ametri
 su
h that the open balls given by the metri
 are a basis of its topology.2.2 Completeness and CompletionProposition 2.6. Let S be a metri
 spa
e and x := {xn}n∈N a sequen
e in
S. Then x 
onverges to p ∈ S i� for any ǫ > 0 there exists an n0 ∈ N su
hthat for all n ≥ n0 : d(xn, p) < ǫ.Proof. Immediate.De�nition 2.7. Let S be a metri
 spa
e and x := {xn}n∈N a sequen
e in
S. Then x is 
alled a Cau
hy sequen
e i� for all ǫ > 0 there exists an n0 ∈ Nsu
h that for all n,m ≥ n0 : d(xn, xm) < ǫ.Proposition 2.8. Any 
onverging sequen
e in a metri
 spa
e is a Cau
hysequen
e.Proof. Exer
ise.Proposition 2.9. Suppose x is a Cau
hy sequen
e in a metri
 spa
e. If pis a

umulation point of x then x 
onverges to p.Proof. Exer
ise.De�nition 2.10. Let S be a metri
 spa
e and U ⊆ S a subset. If everyCau
hy sequen
e in U 
onverges to a point in U then U is 
alled 
omplete.Proposition 2.11. A 
omplete subset of a metri
 spa
e is 
losed. A 
losedsubset of a 
omplete metri
 spa
e is 
omplete.Proof. Exer
ise.De�nition 2.12 (Totally boundedness). Let S be a metri
 spa
e. A subset
U ⊆ S is 
alled totally bounded i� for any r > 0 the set U admits a 
over by�nitely many open balls of radius r.Proposition 2.13. A subset of a metri
 spa
e is 
ompa
t i� it is 
ompleteand totally bounded.
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kl � RA NOTES � 18/03/2009Proof. We �rst show that 
ompa
tness implies totally boundedness and 
om-pleteness. Let U be a 
ompa
t subset. Then, for r > 0 
over U by open ballsof radius r 
entered at every point of U . Sin
e U is 
ompa
t, �nitely manyballs will 
over it. Hen
e, U is totally bounded. Now, 
onsider a Cau
hysequen
e x in U . Sin
e U is 
ompa
t x must have an a

umulation point
p ∈ U (Proposition 1.23) and hen
e (Proposition 2.9) 
onverge to p. Thus,
U is 
omplete.We pro
eed to show that 
ompleteness together with totally bounded-ness imply 
ompa
tness. Let U be a 
omplete and totally bounded subset.Assume U is not 
ompa
t and 
hoose a 
overing {Uα}α∈A of U that doesnot admit a �nite sub
overing. On the other hand, U is totally bounded andadmits a 
overing by �nitely many open balls of radius 1/2. Hen
e, theremust be at least one su
h ball B1 su
h that C1 := B1 ∩ U is not 
overedby �nitely many Uα. Choose a point x1 in C1. Observe that C1 itself istotally bounded. Indu
tively, 
over Cn by �nitely many open balls of radius
2−(n+1). For at least one of those, 
all it Bn+1, Cn+1 := Bn+1 ∩ Cn is not
overed by �nitely many Uα. Choose a point xn+1 in Cn+1. This pro
essyields a Cau
hy sequen
e x := {xk}k∈N. Sin
e U is 
omplete the sequen
e
onverges to a point p ∈ U . There must be α ∈ A su
h that p ∈ Uα. Sin
e
Uα is open there exists r > 0 su
h that B(p, r) ⊆ Uα. This implies, Cn ⊆ Uαfor all n ∈ N su
h that 2−n+1 < r. However, this is a 
ontradi
tion to the
Cn not being �nitely 
overed. Hen
e, U must be 
ompa
t.Proposition 2.14. The notions of 
ompa
tness and limit point 
ompa
tnessare equivalent in a metri
 spa
e.Proof. Exer
ise.Proposition 2.15. A totally bounded metri
 spa
e is se
ond-
ountable.Proof. Exer
ise.Often it is desirable to work with a 
omplete metri
 spa
e when one isonly given a non-
omplete metri
 spa
e. To this end one 
an 
onstru
t the
ompletion of a metri
 spa
e. This is detailed in the following exer
ise.Exer
ise 2. Let S be a metri
 spa
e.

• Let x := {xn}n∈N and y := {yn}n∈N be Cau
hy sequen
es in S. Showthat the limit limn→∞ d(xn, yn) exists.
• Let T be the set of Cau
hy sequen
es in S. De�ne the fun
tion d̃ :

T × T → R
+
0 by d̃(x, y) := limn→∞ d(xn, yn). Show that d̃ de�nes apseudometri
 on T .

• Show that a ∼ b ⇐⇒ d̃(a, b) = 0 de�nes an equivalen
e relation on
T .
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• Show that S := T/ ∼ is naturally a metri
 spa
e.
• Show that S is 
omplete. [Hint: First show that given a Cau
hy se-quen
e x in S and a subsequen
e x′ of x we have d̃(x, x′) = 0. Thatis, x ∼ y in T . Use this to show that for any Cau
hy sequen
e x in

S an equivalent Cau
hy Sequen
e x′ 
an be 
onstru
ted whi
h has aspe
i�
 asymptoti
 behaviour. For example, x′ 
an be made to sat-isfy d(x′

n, x′

m) < 1
min(m,n) . Now a Cau
hy sequen
e x̂ = {x̂n}n∈N in

S 
onsists of equivalen
e 
lasses x̂n of Cau
hy sequen
es in S. Givensome representative xn of x̂n show that there is another representative
x′n whith spe
i�
 asymptoti
 behaviour. Using su
h representatives
x′n for all n ∈ N show that the equivalen
e 
lass in S of the diagonalsequen
e y := {x′n

n}n∈N is a limit of x̂.℄
• Show that there is a natural isometri
 embedding (i.e., a map thatpreserves the metri
) iS : S → S. Furthermore, show that this is abije
tion i� S is 
omplete.De�nition 2.16. The metri
 spa
e S 
onstru
ted above is 
alled the 
om-pletion of the metri
 spa
e S.Proposition 2.17 (Universal property of 
ompletion). Let S be a metri
spa
e, T a 
omplete metri
 spa
e and f : S → T an isometri
 embedding.Then, there is a unique isometri
 embedding f : S → T su
h that f = f ◦ iS .Furthermore, the 
losure of f(S) in T is equal to f(S).Proof. Exer
ise.


