
Robert Oekl � RA NOTES � 18/03/2009 1Notes for the ourse REAL ANALYSIS1 Topology1.1 Basi De�nitionsDe�nition 1.1 (Topology). Let S be a set. A subset T of the set P(S) ofsubsets of S is alled a topology i� it has the following properties:
• ∅ ∈ T and S ∈ T .
• Let {Ui}i∈I be a family of elements in T . Then ⋃

i∈I Ui ∈ T .
• Let U, V ∈ T . Then U ∩ V ∈ T .A set equipped with a topology is alled a topologial spae. The elements of

T are alled the open sets in S. A omplement of an open set in S is alleda losed set.De�nition 1.2. Let S be a topologial spae and x ∈ S. Then a subset
U ⊆ S is alled a neigbourhood of x i� it ontains an open set whih in turnontains x.De�nition 1.3. Let S be a topologial spae and U a subset. The losure
U of U is the smallest losed set ontaining U . The interior ◦

U of U is thelargest open set ontained in U . U is alled dense in S i� U = S.Exerise 1. Explain and justify the meaning of "smallest losed set" and"largest open set" in the above de�nition. Could one similarly talk aboutthe "largest losed set" and the "smallest open set"?De�nition 1.4 (base). Let T be a topology. A subset B of T is alled abase of T i� the elements of T are preisely the unions of elements of B. Itis alled a subbase i� the elements of T are preisely the �nite intersetionsof unions of elements of B.Proposition 1.5. Let S be a set and B a subset of P(S). B is the base ofa topology on S i� it satis�es all of the following properties:
• ∅ ∈ B.
• For every x ∈ S there is a set U ∈ B suh that x ∈ U .
• Let U, V ∈ B. Then there exits a family {Wα}α∈A of elements of Bsuh that U ∩ V =

⋃
α∈A Wα.Proof. Exerise.



2 Robert Oekl � RA NOTES � 18/03/2009De�nition 1.6. Let S be a topologial spae and p a point in S. We alla family {Uα}α∈A of open neighbourhoods of p a neighbourhood base at p i�for any neighbourhood V of p there exists α ∈ A suh that Uα ⊆ V .De�nition 1.7 (Continuity). Let S, T be topologial spaes. A map f : S →
T is alled ontinuous i� for every open set U ∈ T the preimage f−1(U) in
S is open. We denote the spae of ontinuous maps from S to T by C(S, T ).Proposition 1.8. Let S, T, U be topologial spaes, f ∈ C(S, T ) and g ∈
C(T,U). Then, the omposition g ◦ f : S → U is ontinuous.Proof. Immediate.De�nition 1.9 (Indued Topology). Let S be a topologial spae and U asubset. Consider the topology given on U by the intersetion of eah openset on S with U . This is alled the indued topology on U .De�nition 1.10 (Produt Topology). Let S be the artesian produt S =∏

α∈I Sα of a family of topologial spaes. Consider subsets of S of the form∏
α∈I Uα where �nitely many Uα are open sets in Sα and the others oinidewith the whole spae Uα = Sα. These subsets form the base of a topologyon S whih is alled the produt topology.Proposition 1.11. Let S, T,X be topologial spaes and f ∈ C(S × T,X).Then the map fx : T → X de�ned by fx(y) = f(x, y) is ontinuous for every

x ∈ S.Proof. Fix x ∈ S. Let U be an open set in X. We want to show that
W := f−1

x (U) is open. We do this by �nding for any y ∈ W an openneigbourhood of y ontained in W . If W is empty we are done, hene assumethat this is not so. Pik y ∈ W . Then (x, y) ∈ f−1(U) with f−1(U) openby ontinuity of f . Sine S × T arries the produt topology there must beopen sets Vx ⊆ S and Vy ⊆ T with x ∈ Vx, y ∈ Vy and Vx × Vy ⊆ f−1(U).But learly Vy ⊆ W and we are done.1.2 Speial topologial spaesIn a topologial spae it is useful if two distint points an be distinguishedby the topology. A strong form of this distinguishability is the Hausdor�property.De�nition 1.12 (Hausdor�). Let S be a topologial spae. Assume thatgiven any two distint points x, y ∈ S we an �nd open sets U, V ⊂ S suhthat x ∈ U and y ∈ V and U ∩V = ∅. Then, S is said to have the Hausdor�property. We also say that S is a Hausdor� spae.De�nition 1.13. Let S be a topologial spae. S is alled �rst-ountable i�there exists a ountable neighbourhood base at eah point of S. S is alledseond-ountable i� the topology of S admits a ountable base.



Robert Oekl � RA NOTES � 18/03/2009 3De�nition 1.14 (open over). Let S be a topologial spae and U ⊆ S asubspae. A family of open sets {Uα}α∈A is alled an open over of U i�
U ⊆

⋃
α∈A Uα.De�nition 1.15. Let S be a topologial spae and U ⊆ S a subset. Uis alled ompat i� every open over of U ontains a �nite subover. Uis alled sequentially ompat i� every sequene in U ontains a onvergingsubsequene.Proposition 1.16. A losed subset of a ompat spae is ompat. A om-pat subset of a Hausdor� spae is losed.Proof. Exerise.Proposition 1.17. The image of a ompat set under a ontinuous map isompat.Proof. Exerise.1.3 Sequenes and onvergeneDe�nition 1.18 (Convergene of sequenes). Let x := {xn}n∈N be a se-quene of points in a topologial spae S. We say that x has an aumulationpoint (or limit point) p i� for evey neighbourhood U of x we have xk ∈ Ufor in�nitely many k ∈ N. We say that x onverges to a point p i� for anyneighbourhood U of p there is a number n ∈ N suh that for all k ≥ n :

xk ∈ U .Proposition 1.19. Let S be a topologial spae and U ⊆ S a losed subspae.Let x be a sequene of points in U whih has an aumulation point p ∈ S.Then, p ∈ U .Proof. Suppose p /∈ U . Sine U is losed S \U is an open neighbourhood of
p. But S \ U does not ontain any point of x, so p annot be aumulationpoint of x. This is a ontradition.Proposition 1.20. Let S, T be topologial spaes, f ∈ C(S, T ) and {xn}n∈Na sequene in S onverging to p. Then, the sequene f{(xn)}n∈N in T on-verges to f(p).Proof. Exerise.Proposition 1.21. Let S be Hausdor� spae and {xn}n∈N a sequene in Swhih onverges to a point x ∈ S. Then, {xn}n∈N does not onverge to anyother point in S.Proof. Exerise.



4 Robert Oekl � RA NOTES � 18/03/2009De�nition 1.22 (Limit point ompatness). A topologial spae S is saidto be limit point ompat i� every sequene in S has an aumulation point(limit point).Proposition 1.23. A ompat spae is limit point ompat.Proof. Consider a sequene x in a ompat spae S. Suppose x does not havean aumulation point. Then, for eah point p ∈ S we an hoose an openneighbourhood Up whih ontains only �nitely many points of x. However,by ompatness, S is overed by �nitely many of the sets Up. But their unionan only ontain a �nite number of points of x, a ontradition.Proposition 1.24. Let S be a �rst-ountable topologial spae and x =
{xn}n∈N a sequene in S with aumulation point p. Then, x has a subse-quene that onverges to p.Proof. By �rst-ountability hoose a ountable neighbourhood base {Un}n∈Nat p. Now onsider the family {Wn}n∈N of open neighbourhoods Wn :=⋂n

k=1 Uk at p. It is easy to see that this is again a ountable neighbourhoodbase at p. Moreover, it has the property that Wn ⊆ Wm if n ≥ m. Now,Choose n1 ∈ N suh that xn1
∈ W1. Reursively, hoose nk+1 > nk suhthat xnk+1

∈ Wk+1. This is possible sine Wk+1 ontains in�nitely manypoints of x. Let V be a neighbourhood of p. There exists some k ∈ N suhthat Uk ⊆ V . By onstrution, then Wm ⊆ Wk ⊆ Uk for all m ≥ k andhene xnm
∈ V for all m ≥ k. Thus, the subsequene {xnm

}m∈N onvergesto p.2 Metri spaes2.1 Basi De�nitionsDe�nition 2.1. Let S be a set and d : S×S → R
+
0 a map with the followingproperties:

• d(x, y) = d(y, x) ∀x, y ∈ S. (symmetry)
• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S. (triangle inequality)
• d(x, y) = 0 =⇒ x = y ∀x, y ∈ S. (de�niteness)Then d is alled a metri on S. S is also alled a metri spae.De�nition 2.2. If in the above de�nition the third ondition is weakenedto
• d(x, x) = 0 ∀x ∈ S,then d is alled a pseudometri and S a pseudometri spae.



Robert Oekl � RA NOTES � 18/03/2009 5De�nition 2.3. Let S be a metri spae, x ∈ S and r > 0. Then the set
Br(x) := {y ∈ S : d(x, y) < r} is alled the open ball of radius r enteredaround x in S. The set Br(x) := {y ∈ S : d(x, y) ≤ r} is alled the losedball of radius r entered around x in S.Proposition 2.4. Let S be a metri spae. Then, the open balls in S to-gether with the empty set form the basis of a topology on S. This topology isHausdor� and �rst-ountable.Proof. Exerise.De�nition 2.5. A topologial spae is alled metrizable i� there exists ametri suh that the open balls given by the metri are a basis of its topology.2.2 Completeness and CompletionProposition 2.6. Let S be a metri spae and x := {xn}n∈N a sequene in
S. Then x onverges to p ∈ S i� for any ǫ > 0 there exists an n0 ∈ N suhthat for all n ≥ n0 : d(xn, p) < ǫ.Proof. Immediate.De�nition 2.7. Let S be a metri spae and x := {xn}n∈N a sequene in
S. Then x is alled a Cauhy sequene i� for all ǫ > 0 there exists an n0 ∈ Nsuh that for all n,m ≥ n0 : d(xn, xm) < ǫ.Proposition 2.8. Any onverging sequene in a metri spae is a Cauhysequene.Proof. Exerise.Proposition 2.9. Suppose x is a Cauhy sequene in a metri spae. If pis aumulation point of x then x onverges to p.Proof. Exerise.De�nition 2.10. Let S be a metri spae and U ⊆ S a subset. If everyCauhy sequene in U onverges to a point in U then U is alled omplete.Proposition 2.11. A omplete subset of a metri spae is losed. A losedsubset of a omplete metri spae is omplete.Proof. Exerise.De�nition 2.12 (Totally boundedness). Let S be a metri spae. A subset
U ⊆ S is alled totally bounded i� for any r > 0 the set U admits a over by�nitely many open balls of radius r.Proposition 2.13. A subset of a metri spae is ompat i� it is ompleteand totally bounded.



6 Robert Oekl � RA NOTES � 18/03/2009Proof. We �rst show that ompatness implies totally boundedness and om-pleteness. Let U be a ompat subset. Then, for r > 0 over U by open ballsof radius r entered at every point of U . Sine U is ompat, �nitely manyballs will over it. Hene, U is totally bounded. Now, onsider a Cauhysequene x in U . Sine U is ompat x must have an aumulation point
p ∈ U (Proposition 1.23) and hene (Proposition 2.9) onverge to p. Thus,
U is omplete.We proeed to show that ompleteness together with totally bounded-ness imply ompatness. Let U be a omplete and totally bounded subset.Assume U is not ompat and hoose a overing {Uα}α∈A of U that doesnot admit a �nite subovering. On the other hand, U is totally bounded andadmits a overing by �nitely many open balls of radius 1/2. Hene, theremust be at least one suh ball B1 suh that C1 := B1 ∩ U is not overedby �nitely many Uα. Choose a point x1 in C1. Observe that C1 itself istotally bounded. Indutively, over Cn by �nitely many open balls of radius
2−(n+1). For at least one of those, all it Bn+1, Cn+1 := Bn+1 ∩ Cn is notovered by �nitely many Uα. Choose a point xn+1 in Cn+1. This proessyields a Cauhy sequene x := {xk}k∈N. Sine U is omplete the sequeneonverges to a point p ∈ U . There must be α ∈ A suh that p ∈ Uα. Sine
Uα is open there exists r > 0 suh that B(p, r) ⊆ Uα. This implies, Cn ⊆ Uαfor all n ∈ N suh that 2−n+1 < r. However, this is a ontradition to the
Cn not being �nitely overed. Hene, U must be ompat.Proposition 2.14. The notions of ompatness and limit point ompatnessare equivalent in a metri spae.Proof. Exerise.Proposition 2.15. A totally bounded metri spae is seond-ountable.Proof. Exerise.Often it is desirable to work with a omplete metri spae when one isonly given a non-omplete metri spae. To this end one an onstrut theompletion of a metri spae. This is detailed in the following exerise.Exerise 2. Let S be a metri spae.

• Let x := {xn}n∈N and y := {yn}n∈N be Cauhy sequenes in S. Showthat the limit limn→∞ d(xn, yn) exists.
• Let T be the set of Cauhy sequenes in S. De�ne the funtion d̃ :

T × T → R
+
0 by d̃(x, y) := limn→∞ d(xn, yn). Show that d̃ de�nes apseudometri on T .

• Show that a ∼ b ⇐⇒ d̃(a, b) = 0 de�nes an equivalene relation on
T .
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• Show that S := T/ ∼ is naturally a metri spae.
• Show that S is omplete. [Hint: First show that given a Cauhy se-quene x in S and a subsequene x′ of x we have d̃(x, x′) = 0. Thatis, x ∼ y in T . Use this to show that for any Cauhy sequene x in

S an equivalent Cauhy Sequene x′ an be onstruted whih has aspei� asymptoti behaviour. For example, x′ an be made to sat-isfy d(x′

n, x′

m) < 1
min(m,n) . Now a Cauhy sequene x̂ = {x̂n}n∈N in

S onsists of equivalene lasses x̂n of Cauhy sequenes in S. Givensome representative xn of x̂n show that there is another representative
x′n whith spei� asymptoti behaviour. Using suh representatives
x′n for all n ∈ N show that the equivalene lass in S of the diagonalsequene y := {x′n

n}n∈N is a limit of x̂.℄
• Show that there is a natural isometri embedding (i.e., a map thatpreserves the metri) iS : S → S. Furthermore, show that this is abijetion i� S is omplete.De�nition 2.16. The metri spae S onstruted above is alled the om-pletion of the metri spae S.Proposition 2.17 (Universal property of ompletion). Let S be a metrispae, T a omplete metri spae and f : S → T an isometri embedding.Then, there is a unique isometri embedding f : S → T suh that f = f ◦ iS .Furthermore, the losure of f(S) in T is equal to f(S).Proof. Exerise.


